The Bouniakowsky Conjecture and the Density of Polynomial Roots to Prime Moduli

نویسنده

  • Timothy Foo
چکیده

We establish a result linking the Bouniakowsky conjecture and the density of polynomial roots to prime moduli. Mathematics Subject Classification (2000): 11B05, 11C08, 11K06, 11N32

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prime Values of Polynomials and Irreducibility Testing

In 1857 Bouniakowsky [6] made a conjecture concerning prime values of polynomials that would, for instance, imply that x + 1 is prime for infinitely many integers x. Let ƒ (x) be a polynomial with integer coefficients and define the fixed divisor of ƒ, written d(ƒ), as the largest integer d such that d divides f(x) for all integers x. Bouniakowsky conjectured that if f(x) is nonconstant and irr...

متن کامل

On some generalisations of Brown's conjecture

Let $P$ be a complex polynomial of the form $P(z)=zdisplaystyleprod_{k=1}^{n-1}(z-z_{k})$,where $|z_k|ge 1,1le kle n-1$ then $ P^prime(z)ne 0$. If $|z|

متن کامل

Polynomials with No Small Prime Values

Let /(x) be a polynomial with integer coefficients, and let D(/)-gx.d.{/.(*):*eZ}. It was conjectured by Bouniakowsky in 1857 that if f(x) is nonconstant and irreducible over Z, theii \f(x)\/D(f) is prime for infinitely many integers x. It is shown that there exist irreducible polynomials f(x) with D(f) = 1 such that the smallest integer x for which \f(x)\ is prime is large as a function of the...

متن کامل

Simple groups with the same prime graph as $D_n(q)$

Vasil'ev posed Problem 16.26 in [The Kourovka Notebook: Unsolved Problems in Group Theory, 16th ed.,Sobolev Inst. Math., Novosibirsk (2006).] as follows:Does there exist a positive integer $k$ such that there are no $k$ pairwise nonisomorphicnonabelian finite simple groups with the same graphs of primes? Conjecture: $k = 5$.In [Zvezdina, On nonabelian simple groups having the same prime graph a...

متن کامل

On the domination polynomials of non P4-free graphs

A graph $G$ is called $P_4$-free, if $G$ does not contain an induced subgraph $P_4$. The domination polynomial of a graph $G$ of order $n$ is the polynomial $D(G,x)=sum_{i=1}^{n} d(G,i) x^{i}$, where $d(G,i)$ is the number of dominating sets of $G$ of size $i$. Every root of $D(G,x)$ is called a domination root of $G$. In this paper we state and prove formula for the domination polynomial of no...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009